106 research outputs found

    Resonant quasiparticle-ion scattering in anisotropic superfluid 3He

    Get PDF
    Low-energy excitations in quantum fluids are most directly encountered by ions. In the superfluid phases of 3He the relevant elementary excitations are Bogoliubov quasiparticles, which undergo repeated scattering off an ion in the presence of a divergent density of states. We present a quantum-mechanical calculation of the resonant 3He quasiparticle-scattering-limited mobility for negative ions in the anisotropic bulk 3A (A phase) and 3P (polar phase) that is exact when the quasiparticles scatter elastically. We develop a numerical scheme to solve the singular equations for quasiparticle-ion scattering in the A and P phases. Both of these superfluid phases feature a uniaxially symmetric order parameter but distinct topology for the magnitude of the energy gap on the Fermi sphere, i.e., points versus lines of nodes. In particular, the perpetual orbital circulation of Cooper pairs in 3A results in a novel, purely quantum-mechanical intrinsic Magnus effect, which is absent in the polar phase, where Cooper pairs possess no spontaneous orbital angular momentum. This is of interest also for transport properties of heavy-fermion superconductors. We discuss the 3He quasiparticle-ion cross sections, which allow one to account for the mobility data with essentially no free parameters. The calculated mobility thus facilitates an introduction of ‘‘ion spectroscopy’’ to extract useful information on fundamental properties of the superfluid state, such as the temperature dependence of the energy gap in 3A.Peer reviewe

    Spatiotemporal Convergence of Semantic Processing in Reading and Speech Perception

    Get PDF
    Retrieval of word meaning from the semantic system and its integration with context are often assumed to be shared by spoken and written words. How is modality-independent semantic processing manifested in the brain, spatially and temporally? Time-sensitive neuroimaging allows tracking of neural activation sequences. Use of semantically related versus unrelated word pairs or sentences ending with a semantically highly or less plausible word, in separate studies of the auditory and visual modality, has associated lexical-semantic analysis with sustained activation at ∌200–800 ms. Magnetoencephalography (MEG) studies have further identified the superior temporal cortex as a main locus of the semantic effect. Nevertheless, a direct comparison of the spatiotemporal neural correlates of visual and auditory word comprehension in the same brain is lacking. We used MEG to compare lexical-semantic analysis in the visual and auditory domain in the same individuals, and contrasted it with phonological analysis that, according to models of language perception, should occur at a different time with respect to semantic analysis in reading and speech perception. The stimuli were lists of four words that were either semantically or phonologically related, or with the final word unrelated to the preceding context. Superior temporal activation reflecting semantic processing occurred similarly in the two modalities, left-lateralized at 300–450 ms and thereafter bilaterally, generated in close-by areas. Effect of phonology preceded the semantic effect in speech perception but not in reading. The present data indicate involvement of the middle superior temporal cortex in semantic processing from ∌300 ms onwards, regardless of input modality.Peer reviewe

    Aivot ja kielen ymmÀrtÀminen

    Get PDF
    Nykyaikaisilla aivokuvantamismenetelmillÀ voidaan seurata suoraan terveissÀ ihmisaivoissa, miten aktivaatio etenee, kun tutkittavat tekevÀt kielellisiÀ tehtÀviÀ. Kuullun ja luetun ymmÀrtÀminen on jokapÀivÀisessÀ elÀmÀssÀmme aivan oleellinen taito. Olisi loogista ajatella, ettÀ vaikka kuultu ja luettu tieto tulevat sisÀÀn eri reittejÀ, toinen korvien ja toinen silmien kautta, niin ymmÀrtÀmisen tasolla reitit yhdistyvÀt

    Localization of Syntactic and Semantic Brain Responses using Magnetoencephalography

    Get PDF
    Electrophysiological methods have been used to study the temporal sequence of syntactic and semantic processing during sentence comprehension. Two responses associated with syntactic violations are the left anterior negativity (LAN) and the P600. A response to semantic violation is the N400. Although the sources of the N400 response have been identified in the left (and right) temporal lobe, the neural signatures of the LAN and P600 have not been revealed. The present study used magnetoencephalography to localize sources of syntactic and semantic activation in Finnish sentence reading. Participants were presented with sentences that ended in normally inf lected nouns, nouns in an unacceptable case, verbs instead of nouns, or nouns that were correctly inflected but made no sense in the context. Around 400 msec, semantically anomalous last words evoked strong activation in the left superior temporal lobe with significant activation also for word class errors (N400). Weaker activation was seen for the semantic errors in the right hemisphere. Later, 600-800 msec after word onset, the strongest activation was seen to word class and morphosyntactic errors (P600). Activation was significantly weaker to semantically anomalous and correct words. The P600 syntactic activation was localized to bilateral sources in the temporal lobe, posterior to the N400 sources. The results suggest that the same general region of the superior temporal cortex gives rise to both LAN and N400 with bilateral reactivity to semantic manipulation and a left hemisphere effect to syntactic manipulation. The bilateral P600 response was sensitive to syntactic but not semantic factors.Peer reviewe

    Brain Activation During Reading in Deep Dyslexia: An MEG Study

    Get PDF
    Magnetoencephalographic (MEG) changes in cortical activity were studied in a chronic Finnish-speaking deep dyslexic patient during single-word and sentence reading. It has been hypothesized that in deep dyslexia, written word recognition and its lexical-semantic analysis are subserved by the intact right hemisphere. However, in our patient, as well as in most nonimpaired readers, lexical-semantic processing as measured by sentence-final semantic-incongruency detection was related to the left superior-temporal cortex activation. Activations around this same cortical area could be identified in single-word reading as well. Another factor relevant to deep dyslexic reading, the morphological complexity of the presented words, was also studied. The effect of morphology was observed only during the preparation for oral output. By performing repeated recordings 1 year apart, we were able to document significant variability in both the spontaneous activity and the evoked responses in the lesioned left hemisphere even though at the behavioural level, the patient's performance was stable. The observed variability emphasizes the importance of estimating consistency of brain activity both within and between measurements in brain-damaged individuals.Peer reviewe

    Internal Magnus effects in superfluid 3A

    Get PDF
    Orbital angular momentum of the coherently aligned Cooper pairs in superfluid 3A is encountered by an object immersed in the condensate. We evaluate the associated quasiparticle-scattering asymmetry experienced by a negative ion; this leads to a measureable, purely quantum-mechanical reactive force deflecting the ion’s trajectory. Possible hydrodynamic Magnus effects are also discussed.Peer reviewe

    Neural Correlates of Letter-String Length and Lexicality during Reading in a Regular Orthography

    Get PDF
    Behavioral studies have shown that short letter strings are read faster than long letter-strings and words are read faster than nonwords. Here, we describe the dynamics of letter-string length and lexicality effects at the cortical level, using magnetoencephalography, during a reading task in Finnish with long (eight-letter) and short (four-letter) word/nonword stimuli. Length effects were observed in two spatially and temporally distinct cortical activations: (1) in the occipital cortex at about 100 msec by the strength of activation, regardless of the lexical status of the stimuli, and (2) in the left superior temporal cortex between 200 and 600 msec by the duration of activation, with words showing a smaller effect than nonwords. A significant lexicality effect was also evident in this later activation, with stronger activation and longer duration for nonwords than words. There seem to be no distinct cortical areas for reading words and nonwords. The early length effect is likely to be due to the low-level visual analysis common to all stimulus letter-strings. The later lexicality and length effects apparently reflect converging lexico-semantic and phonological influences, and are discussed in terms of dual-route and single-route connectionist models of reading.Peer reviewe

    Semantic Cortical Activation in Dyslexic Readers

    Get PDF
    The combined temporal and spatial resolution of MEG (magnetoencephalography) was used to study whether the same brain areas are similarly engaged in reading comprehension in normal and developmentally dyslexic adults. To extract a semantically sensitive stage of brain activation we manipulated the appropriateness of sentence-ending words to the preceding sentence context. Sentences, presented visually one word at a time, either ended with a word that was (1) expected, (2) semantically appropriate but unexpected, (3) semantically anomalous but sharing the initial letters with the expected word, or (4) both semantically and orthographically inappropriate to the sentence context. In both subject groups all but the highly expected sentence endings evoked strong cortical responses, localized most consistently in the left superior temporal cortex, although additional sources were occasionally found in more posterior parietal and temporal areas and in the right hemisphere. Thus, no significant differences were found in the spatial distribution of brain areas involved in semantic processing between fluent and dyslexic readers. However, both timing and strength of activation clearly differed between the two groups. First, activation sensitivity to word meaning within a sentence context began about 100 msec later in dyslexic than in control subjects. This is likely to result from affected presemantic processing stages in dyslexic readers. Second, the neural responses were significantly weaker in dyslexic than in control subjects, indicating involvement of a smaller or less-synchronous neural population in reading comprehension. Third, in contrast to control subjects, the dyslexic readers showed significantly weaker activation to semantically inappropriate words that began with the same letters as the most expected word than to both orthographically and semantically inappropriate sentence-ending words. Thus, word recognition by the dyslexic group seemed to be qualitatively different: Whereas control subjects perceived words as wholes, dyslexic subjects may have relied on sublexical word recognition and occasionally mistook a correctly beginning word for the one they had expected.Peer reviewe
    • 

    corecore